翻訳と辞書
Words near each other
・ Pfiesteria
・ Pfiesteria piscicida
・ Pfiesteria shumwayae
・ Pfiffelbach
・ Pfinder
・ Pfingstberg (Potsdam)
・ Pfingstwiesengraben
・ Pfinz
・ Pfinztal
・ PFIQ
・ PFIs
・ Pfister
・ Pfister & Vogel
・ Pfister (firm)
・ Pfister form
Pfister's sixteen-square identity
・ Pfisterer
・ Pfisters Mühle
・ Pfitsch
・ Pfitscher Bach
・ Pfitscherjoch
・ Pfitschigogerl
・ Pfitschtal
・ Pfitz
・ Pfitzbach
・ Pfitzer
・ Pfitzinger reaction
・ Pfitzner
・ Pfitzner (surname)
・ Pfitzner Flyer


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Pfister's sixteen-square identity : ウィキペディア英語版
Pfister's sixteen-square identity
In algebra, Pfister's sixteen-square identity is a non-bilinear identity of form
:
\begin
& ^2) \\()
& = z_1^2+z_2^2+z_3^2+z_4^2+\cdots+z_^2
\end

It was first proven to exist by H. Zassenhaus and W. Eichhorn in the 1960s,〔H. Zassenhaus and W. Eichhorn, "Herleitung von Acht- und Sechzehn-Quadrate-Identitaten mit Hilfe von Eigenschaften der verallgemeinerten Quaternionen und der Cayley-Dicksonchen Zahlen," Arch. Math. 17 (1966), 492-496〕 and independently by Pfister〔A. Pfister, Zur Darstellung von -1 als Summe von Quadraten in einem Korper," J. London Math. Soc. 40 (1965), 159-165〕 around the same time. There are several versions, a concise one of which is
:\,^} + u_1 y_9 - u_2 y_ - u_3 y_ - u_4 y_ - u_5 y_ - u_6 y_ - u_7 y_ - u_8 y_}
:\,^} + u_2 y_9 + u_1 y_ + u_4 y_ - u_3 y_ + u_6 y_ - u_5 y_ - u_8 y_ + u_7 y_}
:\,^} + u_3 y_9 - u_4 y_ + u_1 y_ + u_2 y_ + u_7 y_ + u_8 y_ - u_5 y_ - u_6 y_}
:\,^} + u_4 y_9 + u_3 y_ - u_2 y_ + u_1 y_ + u_8 y_ - u_7 y_ + u_6 y_ - u_5 y_}
:\,^} + u_5 y_9 - u_6 y_ - u_7 y_ - u_8 y_ + u_1 y_ + u_2 y_ + u_3 y_ + u_4 y_}
:\,^} + u_6 y_9 + u_5 y_ - u_8 y_ + u_7 y_ - u_2 y_ + u_1 y_ - u_4 y_ + u_3 y_}
:\,^} + u_7 y_9 + u_8 y_ + u_5 y_ - u_6 y_ - u_3 y_ + u_4 y_ + u_1 y_ - u_2 y_}
:\,^} + u_8 y_9 - u_7 y_ + u_6 y_ + u_5 y_ - u_4 y_ - u_3 y_ + u_2 y_ + u_1 y_}
:\,^ y_3 - x_ y_4 - x_ y_5 - x_ y_6 - x_ y_7 - x_ y_8 + x_1 y_9 - x_2 y_ - x_3 y_ - x_4 y_ - x_5 y_ - x_6 y_ - x_7 y_ - x_8 y_}
:\,^ y_1 + x_9 y_2 + x_ y_3 - x_ y_4 + x_ y_5 - x_ y_6 - x_ y_7 + x_ y_8 + x_2 y_9 + x_1 y_ + x_4 y_ - x_3 y_ + x_6 y_ - x_5 y_ - x_8 y_ + x_7 y_}
:\,^ y_1 - x_ y_2 + x_9 y_3 + x_ y_4 + x_ y_5 + x_ y_6 - x_ y_7 - x_ y_8 + x_3 y_9 - x_4 y_ + x_1 y_ + x_2 y_ + x_7 y_ + x_8 y_ - x_5 y_ - x_6 y_}
:\,^ y_1 + x_ y_2 - x_ y_3 + x_9 y_4 + x_ y_5 - x_ y_6 + x_ y_7 - x_ y_8 + x_4 y_9 + x_3 y_ - x_2 y_ + x_1 y_ + x_8 y_ - x_7 y_ + x_6 y_ - x_5 y_}
:\,^ y_1 - x_ y_2 - x_ y_3 - x_ y_4 + x_9 y_5 + x_ y_6 + x_ y_7 + x_ y_8 + x_5 y_9 - x_6 y_ - x_7 y_ - x_8 y_ + x_1 y_ + x_2 y_ + x_3 y_ + x_4 y_}
:\,^ y_1 + x_ y_2 - x_ y_3 + x_ y_4 - x_ y_5 + x_9 y_6 - x_ y_7 + x_ y_8 + x_6 y_9 + x_5 y_ - x_8 y_ + x_7 y_ - x_2 y_ + x_1 y_ - x_4 y_ + x_3 y_}
:\,^ y_1 + x_ y_2 + x_ y_3 - x_ y_4 - x_ y_5 + x_ y_6 + x_9 y_7 - x_ y_8 + x_7 y_9 + x_8 y_ + x_5 y_ - x_6 y_ - x_3 y_ + x_4 y_ + x_1 y_ - x_2 y_}
:\,^ y_1 - x_ y_2 + x_ y_3 + x_ y_4 - x_ y_5 - x_ y_6 + x_ y_7 + x_9 y_8 + x_8 y_9 - x_7 y_ + x_6 y_ + x_5 y_ - x_4 y_ - x_3 y_ + x_2 y_ + x_1 y_}
If all x_i,y_i with i>8 are set equal to zero, then it reduces to Degen's eight-square identity (in blue). The u_i are
:u_1 = \tfrac +x_4 x_ +x_5 x_ +x_6 x_ +x_7 x_ +x_8 x_)}
:u_2 = \tfrac +x_3 x_ +x_4 x_ +x_5 x_ +x_6 x_ +x_7 x_ +x_8 x_)}
:u_3 = \tfrac +bx_3 x_ +x_4 x_ +x_5 x_ +x_6 x_ +x_7 x_ +x_8 x_)}
:u_4 = \tfrac +x_3 x_ +bx_4 x_ +x_5 x_ +x_6 x_ +x_7 x_ +x_8 x_)}
:u_5 = \tfrac +x_3 x_ +x_4 x_ +bx_5 x_ +x_6 x_ +x_7 x_ +x_8 x_)}
:u_6 = \tfrac +x_3 x_ +x_4 x_ +x_5 x_ +bx_6 x_ +x_7 x_ +x_8 x_)}
:u_7 = \tfrac +x_3 x_ +x_4 x_ +x_5 x_ +x_6 x_ +bx_7 x_ +x_8 x_)}
:u_8 = \tfrac +x_3 x_ +x_4 x_ +x_5 x_ +x_6 x_ +x_7 x_ +bx_8 x_)}
and,
:a=-1,\;\;b=0,\;\;c=x_1^2+x_2^2+x_3^2+x_4^2+x_5^2+x_6^2+x_7^2+x_8^2\,.
The u_i also obey,
:u_1^2+u_2^2+u_3^2+u_4^2+u_5^2+u_6^2+u_7^2+u_8^2 = x_^2+x_^2+x_^2+x_^2+x_^2+x_^2+x_^2+x_^2\,
Thus the identity shows that, in general, the product of two sums of sixteen squares is the sum of sixteen rational squares.
No sixteen-square identity exists involving only bilinear functions since Hurwitz's theorem states an identity of the form
:(x_1^2+x_2^2+x_3^2+\cdots+x_n^2)(y_1^2+y_2^2+y_3^2+\cdots+y_n^2) = z_1^2+z_2^2+z_3^2+\cdots+z_n^2\,
with the z_i bilinear functions of the x_i and y_i is possible only for ''n'' ∈ . However, the more general Pfister's theorem (1965) shows that if the z_i are just rational functions of one set of variables, hence has a denominator, then it is possible for all n = 2^m.〔Pfister's Theorem on Sums of Squares, Keith Conrad, http://www.math.uconn.edu/~kconrad/blurbs/linmultialg/pfister.pdf〕 There are also non-bilinear versions of Euler's four-square and Degen's eight-square identities.
==See also==

* Brahmagupta–Fibonacci identity
* Euler's four-square identity
* Degen's eight-square identity
* Sedenions

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Pfister's sixteen-square identity」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.